Foto: Københavns Universitet

forskning

Ny chip kan simultant styre flere spin-qubits på samme kvantechip

At kunne kontrollere mange af de basale hukommelsesenheder, de såkaldte qubits, på samme tid, er afgørende for en funktionel kvantecomputer. Nu har forskere fra Københavns Universitet har skabt en chip, der løser den forhindring.

Hvad er problemet?

En af de store hovedpiner i det globale maraton om at bygge en stor, funktionel kvantecomputer er, hvordan man kontrollerer mange af de basale hukommelsesenheder, de såkaldte qubits, på samme tid. Udfordringen er, at styringen af én qubit typisk bliver negativt påvirket, når man samtidig tilfører elektriske kontrolpulser til en anden qubit.

Hvad har været jeres fokus?

Rundt om i verden bliver der forsket i qubits baseret på forskellige teknologier. Vi fokuserer på halvleder-qubits – såkaldte spin-qubits. Groft sagt består spin-qubits af elektronspin, der er fanget i halvledende nanopartikler kaldet kvanteprikker, som gør, at man kan styre spin-tilstandene og sammenfiltre dem med hinanden. Spin-qubits har den fordel, at de kan bevare kvantetilstanden i lang tid. Det gør, at de potentielt kan lave hurtigere og mere fejlfri beregninger end andre typer platforme. Og så er de så ekstremt små, at man kan klemme mange flere af dem sammen på en chip, end man kan med andre slags qubits. Jo flere qubits, desto større regnekraft får computeren.

Hvad kan jeres chip?

Vi har nogle ret gode qubits, så ’the name of the game’ er at få dem forbundet i kredsløb, der dels kan styre mange qubits og samtidig er komplekse nok til at kunne rette fejl i kvanteberegningerne. Dér, hvor forskningen inden for spin-qubits er nået til, er kredsløb med rækker af 2x2 eller 3x3 qubits. Problemet er, at man kun kan håndtere dem én ad gangen. Det nye og virkelig vigtige ved vores chip, som er fremstillet af det halvledende stof galliumarsenid og på størrelse med en bakterie, er, at vi kan betjene og måle fire qubits på samme tid. Det har man aldrig demonstreret før med spin-qubits – og heller ikke med mange andre typer qubits.

Hvad er næste udfordring?

Lige nu er en af de væsentligste udfordringer, at chippens 48 kontrolelektroder skal tunes manuelt og løbende holdes tunet på trods af støj fra omgivelserne, hvilket er en uhyre svær opgave for et menneske. Derfor er vi ved at se på, hvordan vi kan bruge optimeringsalgoritmer og machine learning til at automatisere tuningen.

Anasua Chatterjee og Federico Fedele, der er kvantefysikere fra Niels Bohr Instituttet på Københavns Universitet, står bag ”Simultaneous Operations in a Two-Dimensional Array of Singlet-Triplet Qubits”.


Læs også...

Mirza Cirkinagic, forbundssekretær i IT-fagforeningen PROSA er også legebarn og hyppig bruger af techgadgets. Her giver han et bud på top- og…

Vibe-coding har masser af potentiale, og det kaster ikke webudviklere ud i massearbejdsløshed. Og så er AI altså ikke bevidst, for bevidsthed er noget…

Christian Ruhwedell arbejder med IT-sikkerhed og risikostyring. Han er overrasket over, hvor godt AI og vibe-coding fungerer allerede i dag, men ser…

Meriemme er 49 år, har læst til datamatiker og studeret datalogi. Hun har de senere år arbejdet mest med compliance, sikkerhed og at styre…

Jonathan Grace, 49, arbejder med digitalt design og kommunikation og er begejstret for de ny muligheder, som AI-værktøjer åbner for.

Danni Dromi, 37 år, er senior data scientist og underviser i vibe-coding. Han er overrasket over, hvor meget værktøjerne til AI-programmering har…

Mads Henrichsen driver konsulentvirksomheden ”syv.ai”, som kalder sig Danmarks mest nørdede AI-udviklere. Han frygter ikke AI-fremtiden, men medgiver,…

Sam Altman udsteder 'kode rød' hos OpenAI, mens ChatGPT kæmper med rivaler

2025 blev et begivenhedsrigt år. Trends kom og gik, som de plejer - ofte drevet af Tik-Tok eller andre platforme, som kan sætte kaste ild på globale…

Bevidsthed er en svær størrelse, men handler om subjektive oplevelser, som hvordan kaffen smager. Derfor er det også en fejl at tale om bevidsthed i…